2025年10月18日(土) 東奥日報26面掲載

學學子管的方在1) 如 花 第四次程藏 (77) 1915 選動

重力波観測の新理論につ いて説明する浅田教授

刀波発生の原因であると推

測される。

重力波の起源が、膨張によ

浅田教授は「ナノヘルツ

るものか、それとも巨大ブ

のかという、宇宙物理学の ラックホール連星によるも

最大級の謎の解明につなが

宇宙形成の謎 解明に光

田・弘大教授ら新理論

はないかと注目されている。

(菊谷賢)

論は、宇宙形成過程の謎を解く手がかりになるので

宇宙形成の初期段階で急激な膨張(インフレーショ

ン)によって生じたのか分からなかった。今回の理

を理論的に構築し、論文として発表した。重力波は、

ブラックホール連星の運動によって発生したのか、

ル連星)によって発生した重力波の新たな観測方法

宙物理学研究センター長)と大学院生らの研究グル

弘前大学大学院理工学研究科の浅田秀樹教授

プが、連なる巨大ブラックホール(ブラックホー

は、これまで「銀河同士が の重力波の起源について 重力波」を対象とした。こ 光年にも及ぶ「ナノヘルツ 2015年に米国の観測装 者にノーベル物理学賞が贈 研究に貢献した3人の科学 置で初めて直接検出され、 づく「時空のゆがみの波」。 インの一般相対性理論に基 今回の研究は、波長が数

重力波は、アインシュタ | 衝突した時のブラックホ 学的に示した。重力波のう し、うなりの観測方法を数 説の二つの考え方があっ 説と、「宇宙誕生直後の急 なり」のような現象に着目 膨張によるもの」とする ったり弱まったりする「う 波が重なり合い、音が強ま なりが確認されれば、ブラ ックホール連星が放つ重力 ール連星が放つ波」とする 研究チームは、巨大ブラ

期のインフレーションが重 ックホール連星が重力波の からなければ、宇宙形成初 主な原因である可能性が高 まる。一方、うなりが見つ

力波 の新た な観 測

な新視点が今後の観測研究 ると期待している。理論的

の突破口になれば」と話し

際的に評価の高い学術誌 Journal o f

Cosmology cle Physics JCAP) Astroparti

※この画像は当該ページに限って 東奥日報社が利用を許諾したものです。 東奥日報社に無断で転載することを禁止します。

[問合せ先] 弘前大学理工学研究科 E-mail:r_koho@hirosaki-u.ac.jp