Advanced Condensed Matter Physics

- Materials Science from Local Structure -

Structural Dynamics
(Phase transition, Chemical reaction, Surface process)

Date: Wednesday 10:20 - 11:50

	Place : 0106
Chapter 1	
	Introduction
	(1) Classifications of Materials
	(2) Interaction between photon and matters
	(3) What is local structure?
Chapter 2	
•	X-ray Absorption Fine Structure
	(1) XAFS (phenomena and formulation)
	(2) XRD
	(3) Synchrotron radiation source
Chapter 3	
	Ferroelectrics and Structural phase transition - PbTiO ₃
	(1) Comparison with BaTiO ₃
	(2) XAFS and XRD
	(3) Soft mode and Debye-Waller factor
Chapter 4	
	Phase transition in alloys and mixtures
	(1) Structure of alloys (AuSi,PbSn,CuZn)
	(2) Structural transition in magnetic NiMn alloy

disordered materials

(Liquid AsTe)

(3) Metal-semiconductor transition in structural

Chapter 5	
	XAFS for Magnetic study (XMCD)
	(1) Theoretical aspects (Dirac equation)
	(2) Application to NiMn alloys (Magnetic XAFS)
Chapter 6	
Chapter 0	Debye-Waller Factor(Thermal factor) in XAFS —theory-
	(1) Cumulant expansion
	(2) Field theoretical approach
	(3) Path integral approach
	(3) Fatti ilitegral approach
Chapter 7	
	Determination of anharmonic potential from thermal factor
	(1) Br solutions
	(2) Water exchange reaction
	(3) Quantum effect in chemical reaction from path integral
Chapter 8	
onapter o	Mesoscopic systems
	(1) Thin layer (Bule LED, InGaN) fluorescence XAFS
	(2) Micro cluster (Ag/Si) TCEY
	(3) Multilayer magnetic systems
	(5) Multilayer magnetic systems
Chapter 9	
	Introduction to phase transition
	(1) Landau theory
	(2) Renormalization approach
	(3) Lee & Yang theory