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We apply a finite temperature path integral method to study strongly anharmonic thermal factors in
extended X-ray absorption fine structure (EXAFS), electron energy-loss spectroscopy (EELS) and angle
resolved X-ray photoelectron spectroscopy (ARXPS). Two examples, symmetric and asymmetric
double-well potentials are considered for the anharmonic potentials, which are used to describe structural
phase transition and rattling mechanism. We discuss the quantum tunneling effects in the thermal factors.
The validity of the classical approximation and the cumulant expansion are also studied for various
asymmetric potentials. Complex plane expression is introduced to explain the specific features of the
EXAFS thermal damping function. Degree of asymmetry of the potential can be estimated from the
complex plane expression. In the temperature dependence of the higher order cumulant (third and
fourth), minimum point (third order) and maximum point (fourth order) appear at the characteristic
temperature, which depends on the potential asymmetry.

KEYWORDS: EXAFS, Debye-Waller factors, double-well potential, path-integral, cumulant expansion, damping
function

DOI: 10.1143/JPSJ.75.054603

1. Introduction

Thermal factors in core spectroscopies such as EXAFS,
EELS, and ARXPS are important to study local atomic
structures around an excited atom. They also provide useful
information about atomic vibration.

Theoretical aspects of temperature dependence in EXAFS
were first studied by Beni and Platzman1) within the
framework of harmonic vibration for nuclei motion and
plane wave approximation for photoelectron waves. Since
that time some improvements have been found beyond the
harmonic approximation2–5) and the plane wave approxima-
tion.6,7) When they include the anharmonic effects in EXAFS
analyses, perturbation theory has been applied by use of
temperature Green’s function3) or thermal perturbation
theory. The former approach has been applied to infinite
crystals,4) and the latter to finite clusters.8) These perturba-
tion approaches are useful to describe weak anharmonicity
in the analyses of temperature effects in EXAFS, EELS,
ARXPS spectra, and they have provided interesting infor-
mation based on cumulant expansion.

On the other hand real space approach proposed by
Yokoyama et al.9) has been used to relate the EXAFS
thermal factors to interatomic potential. In those analyses the
original interatomic potential is used, that is, the classical
approximation is used. It can be safely used in high
temperature region even though the anharmonicity is strong.
Whether we can apply this approach to the analyses at low
temperature region with minor modification or not is still
one of open questions.

The perturbation method mentioned above are useful for
weak anharmonicity, however they cannot be applied to
strong anharmonic systems. For the EXAFS analyses of

thermal effects in double-well potential, a different approach
should be inevitably used instead of the perturbation method.
To study this kind of problem, Mustre de Leon and his
collaborators have used a double-well potential,10)

VðzÞ ¼ aðz� z1Þ2 ðz � z0Þ; bðz� z2Þ2 ðz � z0Þ ð1Þ

where a, b, z1, and z2, are fitting parameters. This potential
easily gives the probability density PðzÞ which has two peaks
even at low temperature. The main drawback of this
potential is that the potential can be continuous at z ¼ z0,
but its derivative is not continuous at that point.

Our previous papers (I–IV)3–6) have studied weak anhar-
monic systems based on a perturbation approach and
cumulant expansion. The papers V11) and VI12) discuss a
real space approach to study EXAFS thermal factor based on
the finite temperature path-integral method originally devel-
oped by Feynman,13) later improved by Cuccoli et al.,14) and
also Feynman and Kleinert.15) This self-consistent approach
can be applied to strongly anharmonic systems and can be
closely related to the classical formulas. We have studied the
range of the applicability of widely used cumulant analyses
and of the classical approximation for the EXAFS thermal
factors.11,16) The effective potential method by Yokoyama17)

and path-integral Monte Carlo (PIMC) method by Fornasini
and coworkers18) have also been successfully applied to
EXAFS thermal analyses.

In this paper we apply the path-integral effective potential
method to one-dimensional symmetric and asymmetric
double-well potential systems in a reservoir at temperature
T . For these systems conventional cumulant analyses do not
work well. To obtain good convergence for these systems,
we should improve the numerical calculation at low temper-
ature. In PbTiO3, atomic pair potential function is well
approximated by asymmetric double-well potential which
can describe ‘‘soft mode’’ behavior.19) Doll et al. studied�E-mail: h03gs213@cc.hirosaki-u.ac.jp
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some thermodynamical properties of small clusters by use
of Fourier Path Integral analyses,20) in which atomic pair
potential function is also considered as asymmetric double-
well potential. In the filled skutterudites, PrOs4Sb12 is
known as 4f heavy fermion superconductor and shows an
interesting rattling behavior suggested by ultrasonic meas-
urement21) in which Pr ion is considered to be moving in the
double-well potential in the cage of Sb12.

In these examples, the double-well potential is only
phenomenologically introduced to explain the observed
results. The Debye-Waller factors in EXAFS are sensitive
to the shape of the pair potential between the X-ray
absorbing atom and the surrounding atoms. For example,
the EXAFS envelop function for the symmetric double-well
potential shows its specific feature.11) It is thus interesting to
study the EXAFS Debye-Waller factors for asymmetric
double-well potentials. To analyze the Debye-Waller factor
in EXAFS is important, because it makes possible to directly
observe the existence of the double-well potential and
further to evaluate the shape of that potential. The present
approach should be useful for the structural studies of new
materials to show exotic physical properties in which atoms
are driven by double-well potential.

2. Theory

Let consider diatomic systems in a reservoir whose
relative vibrational motion is described by the Hamiltonian,

H ¼
p2

2�
þ VðqÞ ð2Þ

where � is the reduced mass and q is the instantaneous
interatomic distance. When we deal with statistical average
of an operator A, we should calculate the trace,

hAi ¼
1

Z
TrðA�Þ ð3Þ

where � is the density operator defined by � ¼ expð��HÞ,
ð� ¼ 1=kBTÞ and Z ¼ expð��FÞ ¼ Trð�Þ is the partition
function for the systems. The trace can be calculated by
applying Feynman’s path-integral techniques, however,
instead of summing over all paths in just one step, one can
classify the paths into two groups as proposed by Feyn-
man.13) One group consists of average (quasi classical) path
�qq given by

�qq ¼
1

�

Z �

0

qðuÞ du; ðh� ¼ 1Þ ð4Þ

and the other group consists of quantum fluctuation around
�qq. The average path is the same as the classical path in the
high temperature limit (� ! 0). To use the non-perturbation
method based on the path-integral techniques, we approx-
imate the instantaneous potential VðqðuÞÞ by a trial potential
quadratic in the fluctuation path q� �qq,13,14)

V ¼� V0ðq; �qqÞ ¼ wð �qqÞ þ
�!ð �qqÞ2

2
ðq� �qqÞ2: ð5Þ

Now the parameter wð �qqÞ and !ð �qqÞ are to be optimized so
that the trial reduced density PðqÞ well approximates the
true reduced density. A variational approach which gives
the same result as the self-consistent approximation is also
possible.13,14) Final expression for the average of a local

operator A can be represented in terms of the probability
density PðqÞ just like a classical statistical mechanics (from
now on q is used instead of �qq for brevity),

hAi ¼
Z

AðqÞPðqÞ dq: ð6Þ

This expression, however, includes important quantum
effects, and the probability is represented by

PðqÞ ¼
1

Z

ffiffiffiffiffiffiffiffiffi
�

2��

r
exp½��VLðqÞ�; ð7Þ

where local effective potential VLðqÞ is defined by

exp½�VLðqÞ� ¼
Z

d� exp½�Veðqþ �Þ�

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2��ðqþ �Þ
p exp �

�2

2�ðqþ �Þ

� �
: ð8Þ

Now we have used the relations,

VeðqÞ=" ¼ wðqÞ þ
1

�
ln

sinh f ðqÞ
f ðqÞ

� �
; ð9Þ

f ðqÞ ¼
�!ðqÞ
2

; ð10Þ

�ðqÞ ¼ ðcoth f ðqÞ � 1= f ðqÞÞ=ð2�!ðqÞÞ; ð11Þ
where " is the energy scale. The local effective potential
VLðqÞ is reduced to the bare potential VðqÞ in the high
temperature limit.

In the EXAFS analyses the operator A should be
expð2ik��Þ where k is the wave vector of ejected photo-
electrons, k ¼ jkj and �� is the projected relative displace-
ment, which is simply given by �� ¼ �q ¼ q� q0 in one-
dimensional cases; q0 is the equilibrium interatomic dis-
tance. So that what we should calculate to study EXAFS
thermal factor is the thermal average including quantum
fluctuation given by

hexpð2ik�qÞi ¼
1

Z

ffiffiffiffiffiffiffiffiffi
�

2��

r Z
expð2ik�qÞ exp½��VL� dq: ð12Þ

Any order of moments hqni is also calculated by use of the
local effective potential VLðqÞ

hqni ¼
1

Z

ffiffiffiffiffiffiffiffiffi
�

2��

r Z
qn exp½��VLðqÞ� dq: ð13Þ

We now shifted the origin for the potential VðqÞ to be
q0 ¼ 0. This expression shows that the widely used real
space representation is obtained with some modification
from the quantum fluctuation effects: the original inter-
atomic potential VðqÞ should be replaced by the local
effective potential VLðqÞ which is temperature dependent
and tends to be VðqÞ at high temperature from physical
consideration. Though the discussion is only shown for
the EXAFS thermal factors here, extension to EELS and
ARXPS thermal factors is straightforward.11)

3. Results and Discussion

In this section the method described in the previous
section is applied to anharmonic diatomic systems in double-
well potentials given by

VðqÞ=" ¼ vðqÞ ¼ ðq2 � �2Þ2 þ c�
q3

3
� �2q

� �
; ð14Þ
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where � is the minima of the potential well and c is the
measure of asymmetry of the double-well potential: The
strongly asymmetric potential is obtained for the large c.
This potential has the absolute minimum at q ¼ ��
irrespective of c. We introduced a parameter g defined by

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�
2v00ðqminÞ
�"�2

s
: ð15Þ

Small (large) g value gives rise to a weak (strong) quantum
effect. By use of this parameter g, we define a reduced
temperature t by

t ¼
kBT

"
¼

h�
2v00ðqminÞ
�g2�2

� ��1

kBT : ð16Þ

In the present paper we use energy scale " and length scale
� for Cu–O in high-temperature superconductor YBa2Cu3-
O7��,

22) which is a model for double-well potential. Figure 1
shows the double-well potential for various c values at � ¼
0:1 Å.

Mustre de Leon et al.10) considered a similar asymmetric
quartic potential

VðqÞ ¼
a

2
q2 þ

b

4
q4 þ

cffiffiffi
2

p q3
� �

e�djq=2j ð17Þ

which represents a single-well potential (a > 0, b > 0) or a
double-well potential (a < 0, b < 0). They introduced the
exponential factor to avoid the unphysical behavior VðqÞ !
q4 for large q. On the other hands, in the present double-well
potential, the values of potential minima, �, do not depend
on the asymmetry of the potential. Although they disucussed
the quantum statistical wave function, they only obtained
parameters of the asymmetric potential by fitting to the
experimental EXAFS radial distribution function, which
was obtained from the bare potential VðqÞ on the basis of
classical statistics. They evaluated the quantum effect as
tunneling frequency h�!t ¼ "1 � "0, where "1 and "0 were
first excited and ground state energies, respectively. Our
methodology is quite different from theirs: the quantum
effect is directly evaluated from the quantum effective
potential based on the first principle path-integral approach.
The probability density PðqÞ implicitly includes the quantum
tunneling effect.

By use of the self-consistent method described in §2, we

obtain f ðqÞ as a function of q from which we calculate VeðqÞ
and PðqÞ.

Figure 2 shows the quantum probability density PðqÞ for
different c ¼ 0 (a), 1 (b), 4 (c). In the case of symmetric
double-well potential (c ¼ 0), PðqÞ has a single peak around
q ¼ 0 Å at low temperature (T ¼ 1:52 and 15.2K) because
of the tunneling effect, but it is split into two peaks at
q ¼ �0:1 Å for the higher temperature. In classical picture
nuclear position is frozen at q ¼ �0:1 Å, at the bottoms of
the deep potential holes. The asymmetric double-well
potentials (c ¼ 1 and 4) give also single peak at low
temperature (T ¼ 1:52 and 15.2K), but the peak position
is not at q ¼ 0:1 Å and shifted to smaller q even in low
temperature because the tunneling probability from the
deeper bottom to the shallow bottom is already finite. As
temperature increases, the two peaks are found at q ¼ 0:1 Å

Fig. 1. The double-well potential VðqÞ ¼ ðq2 � �2Þ2 þ c�ðq
3

3
� �2qÞ,

ðc ¼ 0; 1; 2; 4Þ for fixed �: � ¼ 0:1 Å.

Fig. 2. The probability density PðqÞ for different asymmetry parameter c

and temperatures T; (a) c ¼ 0, (b) c ¼ 1, (c) c ¼ 4.
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and at q ¼ �0:1 Å because of thermal excitation to the
shallow bottom at q ¼ �0:1 Å.

3.1 Temperature dependence of cumulants in EXAFS
thermal factor

From eqs. (7) and (13) we can evaluate the second, third,
and fourth order cumulants h. . .ic by use of the same and
lower order moments,

hqic ¼ hqi; ð18Þ

hq2ic ¼ hq2i � hqi2; ð19Þ

hq3ic ¼ hq3i � 3hqihq2i þ 2hqi3; ð20Þ

hq4ic ¼ hq4i � 4hq3ihqi � 3hq2i2

þ 12hq2ihqi2 � 6hqi4: ð21Þ

Figure 3(a) shows the first order moment hqi as a function
of temperature calculated by use of the quantum (solid lines)
and the classical (dashed lines) probability density for c ¼ 1.
The first order moments hqi are nearly the same for classical
and quantum calculations in high temperature region
(T > 1000K), but quantum results are smaller than the
classical ones at T < 1000K. Figure 3(b) shows quantum
(solid line) and classical (dashed line) probability density
at T ¼ 1:52K. In the classical approximation particles are
frozen at the deeper bottom of the potential-well (q ¼ 0:1 Å),
so the probability density has sharp peak at q ¼ 0:1 Å,
which gives hqi 	 0:1 Å at T ¼ 1:52K. In quantum case, the
tunneling effect and zero-point vibration play an important
role, so that PðqÞ has a broad peak which shifts to potential
barrier side; hqi 	 0:075 Å at T ¼ 1:52K.

Figure 4 shows the second order cumulant hq2ic as a
function of temperature for various double-well potentials,
c ¼ 0 (a), c ¼ 1 (b), c ¼ 2 (c) and c ¼ 4 (d). The classical
approximation gives good result at high temperature [T >
600K for c ¼ 0 (a), T > 200K for c ¼ 1 (b), T > 300K
for c ¼ 2 (c), T > 500K for c ¼ 4 (d)]. As temperature
decreases, the classical probability density has a sharp peak
as shown in Fig. 3(b) and the classical approximation gets
poor. In particular, for a symmetric potential (c ¼ 0) the

Fig. 3. The temperature dependence of the quantum (solid line) and

classical (dashed line) first order moment hqi for c ¼ 1 (a). The quantum

and classical probability density PðqÞ at T ¼ 1:52K is shown in (b).

Fig. 4. The temperature dependence of the quantum (solid lines) and

classical (dashed lines) second order cumulant hq2ic for four different

double-well potentials; (a) c ¼ 0, (b) c ¼ 1, (c) c ¼ 2 and (d) c ¼ 4.
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classical approximation gives two sharp peaks at �0:1 Å
in the probability density at T � 0K.11) Thus the classical
second order cumulant hq2ic approaches to 0.01 Å2 and gives
the largest difference from the quantum result.

At low temperature atoms vibrate near the bottom of the
deep potential well and the vibration can be approximated by
harmonic vibration, where hq2ic 	 h�=�! from Virial theo-
rem. The frequency !2 is related to v00ð�Þ ¼ 8�2 þ 2�2c for
the potential given by eq. (14). As the parameter c increases,
v00ð�Þ and ! also increase. As a result hq2ic decrease at low
temperature as observed in Fig. 4.

Figure 5 shows the third order cumulant hq3ic as a
function of temperature for three different double-well
potentials c ¼ 1 (a), c ¼ 2 (b), and c ¼ 4 (c). In the case
of the symmetric double-well potential (c ¼ 0), both
quantum and classical third order cumulant hq3ic ¼ 0

irrespective of temperature, because both the classical
potential and quantum local effective potential VLðqÞ are
symmetric. The third order cumulant hq3ic reflects asymme-

try of the potential. In the case of c ¼ 1 and c ¼ 2, hq3ic
shows minimum (jhq3icj is the largest) indicated by arrows at
�100 and �550K in quantum calculations. The largest
asymmetric distribution is found there (see also Fig. 2). In
higher temperature region, the quantum local effective
potential is reduced to the bare potential VðqÞ, so hq3ic
shows the same behavior at high temperature for the
quantum and classical calculations. We should note that
quantum and classical third order cumulants hq3ic are nearly
the same for c ¼ 4, because the quantum tunneling proba-
bility is expected to be quite small as shown in Fig. 2. This
characteristic temperature at the minimum position of the
third order cumulant shifts to higher when c increases. If we
study the temperature dependence of third order cumulant
for certain double-well potential, we can obtain some
information on the asymmetry of the effective potential
VLðqÞ.

Similar behavior is observed in the fourth order cumulant
hq4ic (in this case, maximum point). Figure 6 shows
quantum fourth order cumulant hq4ic for four different
double-well potentials c ¼ 0 (solid line), c ¼ 1 (dashed
line), c ¼ 2 (dotted line), and c ¼ 4 (dash-dotted line) as a
function of temperature. We also find that the maximum
peak position shifts to higher temperature as c. These
characteristic features can be used to study the asymmetry of
the potential.

Next we discuss the quantum effect in the cumulants for
various g values defined by eq. (15). Figure 7 shows the
second, third, and fourth order quantum cumulants for
various g values as functions of reduced temperature t

defined by eq. (16), and classical cumulants for comparison.
In the case of g ¼ 1 (weak quantum case), the quantum
calculations provide similar curves to the classical cumu-
lants even in quite low temperature. In the case of g ¼ 5 and
g ¼ 10, quantum calculations shows large difference from
classical curves as expected, in particular for the third order
cumulants.

3.2 EXAFS thermal damping function
In this section, we discuss EXAFS thermal damping

function GðkÞ defined by11)

Fig. 5. The temperature dependence of the quantum (solid lines) and

classical (dashed lines) third order cumulants hq3ic for three different

double-well potentials; (a) c ¼ 1, (b) c ¼ 2 and (c) c ¼ 4. The arrows

indicate the minimum points, Tm.

Fig. 6. The temperature dependence of the quantum fourth order

cumulant hq4ic for four double-well potentials; c ¼ 0 (solid line), c ¼ 1

(dashed line), c ¼ 2 (dotted line), and c ¼ 4 (dash-dotted line). The

arrows indicate the maximum points, Tm.
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GðkÞ ¼ hexpð2ikqÞi

¼
Z 1

�1
expð2ikqÞPðqÞ dq: ð22Þ

This function can be written in the cumulant expansion as far
as that expansion converges. Actually it rapidly converges in
weak anharmonic systems;

GðkÞ ¼ exp �2k2hq2ic þ
2

3
k4hq4ic � 
 
 


� �

� exp i khqic �
4

3
k3hq3ic þ 
 
 


� �� �
: ð23Þ

Equation (22) can be applied to any strongly anharmonic

systems, whereas eq. (23) can only be applied to weak
anharmonic systems. Now we separately calculate jGðkÞj and
phase 	ðkÞ

jGðkÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcosð2kqÞi2 þ hsinð2kqÞi2

q
	 exp �2k2hq2ic þ

2

3
k4hq4ic � 
 
 


� �
; ð24Þ

	ðkÞ ¼ tan�1 hsinð2kqÞi
hcosð2kqÞi

� �

	 khqic �
4

3
k3hq3ic þ 
 
 
 : ð25Þ

We also use another form

ðGx;GyÞ ¼ ðReG; ImGÞ: ð26Þ

The damping strength jGðkÞj dominates the envelop of
EXAFS oscillation function 
ðkÞ, and the phase 	ðkÞ appears
in sinusoidal function of 
ðkÞ. The trajectories of ðGx;GyÞ
on the complex plane contains useful information on the
thermal factor GðkÞ. Figures 8–10 show (a) the amplitudes
jGðkÞj, (b) the phases 	ðkÞ, and (c) ðGx;GyÞ on the complex
plane at three temperatures T ¼ 15:2K (Fig. 8), 242K
(Fig. 9), 1520K (Fig. 10). For the symmetric potential
c ¼ 0, GðkÞ has to be real and the trajectory of ðGx;GyÞ
oscillates just on the real axis which is not plotted here. At
low temperature T ¼ 15:2K (Fig. 8), as c decreases, the
thermal damping jGðkÞj get smaller because of the large
tunneling probability. The phase 	ðkÞ for both c ¼ 1 and 4
show monotonically increasing function of k. In the complex
plane, the trajectory for c ¼ 4 is far from real axis in
comparison with that for c ¼ 1. This means that the
trajectory on complex plane can be an indicator of the
anharmonicity of the atomic pair potential.

At T ¼ 242K (Fig. 9), the characteristic feature for the
thermal factor for the double-well potential appears in the
case of c ¼ 0, ‘‘beat’’ in jGðkÞj at k ¼ 10 Å�1. In the case of
c ¼ 1, jGðkÞj behaves like ‘‘beat’’ but not so clearly. On the
other hand, jGðkÞj for c ¼ 4 is different from the others; that
is smooth, because it has only single potential well (see
Fig. 1). The phase for c ¼ 1 increases as k and shows an
inflection point around k ¼ 10 Å�1 where the amplitude
jGðkÞj has an local minimum. In the large asymmetric case
(c ¼ 4), the amplitude decreases and the phase increases
monotonically. In the complex plane, trajectory for c ¼ 4 is
far from real axis in comparison with c ¼ 1 because of large
asymmetry of atomic pair potential. The trajectory is on the
real axis for c ¼ 0. At high temperature T ¼ 1520K
(Fig. 10), the amplitude jGðkÞj shows ‘‘beat’’ for c ¼ 0, 1,
and 4 at 8 Å�1 (arrow A in Fig. 10) which is smaller than the
‘‘beat’’ for 242K (10 Å�1 in Fig. 9). In Fig. 10, the jGðkÞj
shows another ‘‘beat’’ at 17 Å�1 (arrow B). The ‘‘beat’’ can
be related to the small difference in the distances to the
scatterers23)

2k�r ¼ ð2nþ 1Þ�; ðn ¼ 0; 1; 2; . . .Þ ð27Þ

where �r is the small difference in the interatomic distances.
In the present asymmetric double-well system �r ¼ 0:2 Å,
so that the ‘‘beat’’ is expected at k ¼� 8:0 Å�1 which is
consistent with our result at 1520K, where the quantum
tunneling effect can be neglected. We also observe the
‘‘beat’’ for c ¼ 4 but it is not so pronounced. The phase for

Fig. 7. The temperature dependence of the quantum and classical second

(a), third (b), and fourth (c) order cumulants for various g; g ¼ 1 (solid

lines), g ¼ 5 (dashed lines), g ¼ 10 (dash-dotted lines) and classical

results (circles): t is reduced temperature.
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c ¼ 1 shows steps at 8 Å�1(arrow A) and 17 Å�1(arrow B),
where the jump is about �. The ‘‘beat’’ is more remarkable at
high temperature where the classical picture works well than
at low temperature. In Fig. 10(c), we plot ðGx;GyÞ near the
real axis for c ¼ 1 but we see that Gy 6¼ 0 because PðqÞ is
not a complete symmetric function. The phase of GðkÞ
rapidly changes near at 8 Å�1(arrow A) and 17 Å�1(arrow B)
where the ‘‘beat’’ occurs. The characteristic feature in
Figs. 10(a) and 10(b) are understood from the trajectory of
ðGx;GyÞ for the quantum calculation. From 2 to 10 Å�1 it is
nearly on a straight line crosses the imaginary axis at 8 Å�1

almost parallel to the real axis. So that we find jGðkÞjmin at
�8 Å�1. From 12 to 20 Å�1 the trajectory is again on a
straight line quite close to the origin, which gives small

jGðkÞj as observed in Fig. 10(a) whereas gives large change
in 	ðkÞ [see Fig. 10(b)].

Next, we discuss the validity of the classical approxima-
tion and the cumulant expansion of the damping function
GðkÞ. Figure 11 shows (a) the amplitude jGðkÞj, (b) phase
	ðkÞ and (c) complex plane expression of the thermal
damping function for the quantum path-integral (solid line)
and the classical (dashed line) calculation at T ¼ 15:2K for
c ¼ 1. The cumulant expansion up to fourth order (dash-
dotted line) is also shown. As the classical approximation is
poor at low temperature, the amplitude jGðkÞj in the classical
approximation really gives a poor agreement with the
quantum path-integral calculation because the probability
density PðqÞ is strongly affected by tunneling. On the other

Fig. 8. The amplitudes jGðkÞj (a), the phases 	ðkÞ (b), and complex plane

expression (c) in the thermal damping function GðkÞ of EXAFS at

temperature 15.2K for three different potentials. The black and white dots

in (c) are plotted with 2 Å�1 intervals.

Fig. 9. The amplitudes jGðkÞj (a), the phases 	ðkÞ (b), and complex plane

expression (c) in the thermal damping function GðkÞ of EXAFS at

temperature 242K for three different potentials. The black and white dots

in (c) are plotted with 2 Å�1 intervals.
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hands, the cumulant expansion gives good agreement with
the quantum path-integral calculation. The quantum path-
integral calculation for the phase 	ðkÞ monotonically
increases, and the classical result is similar to the quantum
result, but is a little larger. On the other hand, the cumulant
expansion is quite good up to k ¼ 12 Å�1, whereas it gets
poor above 12 Å�1. In the complex plane expression (c), the
trajectory for the classical approximation is similarly
expanded from the trajectory for the quantum path-integral
approach. This is the reason why they show similar behavior
in 	ðkÞ but different behavior in jGðkÞj. The trajectory for
the cumulant approximation is quite close to the quantum
trajectory, which gives rise to the nearly same jGðkÞj,

whereas GðkÞ moves more rapidly for the cumulant
approximation, in particular at large k, than for the quantum
method, which results in the large difference of 	ðkÞ. In
contrast to the quantum calculation, the classical calculation
gives a trajectory is nearly on a circle around the origin: This
gives jGðkÞj � const. in that region.

Figure 12 shows (a) the amplitude jGðkÞj, (b) phase 	ðkÞ
and (c) complex plane expression for the quantum path-
integral (solid line) and the classical (dashed line) calcu-
lation at T ¼ 242K for c ¼ 1. The cumulant expansion up
to fourth order (dash-dotted line) is also shown. In the
amplitude jGðkÞj, these three calculations are in good
agreement in the low wavenumber region (. 8 Å�1). In

Fig. 10. The amplitudes jGðkÞj (a), the phases 	ðkÞ (b), and complex plane

expression (c) in the thermal damping function GðkÞ of EXAFS at

temperature 1520K for three different potentials. The arrows A and B are

the position where the ‘‘beat’’ is observed. The black and white dots in (c)

are plotted with 2 Å�1 intervals.

Fig. 11. The amplitude jGðkÞj (a) and phase 	ðkÞ (b) and complex plane

expression (c) in thermal damping function GðkÞ of EXAFS for the

quantum (solid line) and the classical (dashed line) approaches at

T ¼ 15:2K for c ¼ 1. The cumulant expansion up to fourth order (dash-

dotted line) is also shown.
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the high wavenumber region (& 15 Å�1), the classical
approximation and the cumulant expansion are rather poor
but the former can predict the ‘‘beat’’. In the phase 	ðkÞ,
neither the cumulant expansion nor the classical approx-
imation are poor as observed for the symmetric double-well
potential.11) In the complex plane expression, the classical
approximation deviates from the quantum curve. The
cumulant expansion gives good result in low wavenumber
region but it cannot predict quantum behavior in high
wavenumber region: Higher order cumulants should be
taken into account in this region. The observed behavior is
well explained by the trajectories in (c), where from 10 to
16 Å�1 both the quantum and the classical trajectories are on

different circles around the origin.
Figure 13 shows (a) the amplitude jGðkÞj, (b) phase 	ðkÞ

and (c) complex plane expression in the thermal damping
function of EXAFS for the quantum path-integral (solid line)
and the classical (dashed line) calculation at T ¼ 1520K for
c ¼ 1. The cumulant expansion up to fourth order (dash-
dotted line) is also shown. At such high temperature, the
bare potential and the local effective potential is almost the
same and the classical approximation gives a good result in
jGðkÞj and 	ðkÞ. The cumulant expansion up to fourth order
cannot predict the ‘‘beat’’. The reason why the cumulant
calculation fails to predict the ‘‘beat’’ is easily understood
from the trajectory shown in (c).

Fig. 12. The amplitude jGðkÞj (a), phase 	ðkÞ (b) and complex plane

expression (c) in thermal damping function GðkÞ of EXAFS for the

quantum (solid line) and the classical (dashed line) calculation at

T ¼ 242K for c ¼ 1. The cumulant expansion up to fourth order (dash-

dotted line) is also shown.

Fig. 13. The amplitude jGðkÞj (a), phase 	ðkÞ (b) and complex plane

expression (c) in thermal damping function GðkÞ of EXAFS for the

quantum (solid line) and the classical (dashed line) calculation at

T ¼ 1520K for c ¼ 1. The cumulant expansion up to fourth order (dash-

dotted line) is also shown.

J. Phys. Soc. Jpn., Vol. 75, No. 5 K. NITTA et al.

054603-9



4. Conclusion

The real space method based on finite temperature path
integral theory has been applied to the EXAFS thermal
factors for strongly anharmonic systems. The path integral
calculation shows quite different distribution function PðqÞ
from the classical one, in particular, for c ¼ 0, (the
symmetric double-well potential). It has a peak at q ¼ 0 Å
because of tunneling effect through the potential barrier. The
asymmetric potentials give rise to peak shift from the
potential bottom.

The two characteristic features are observed in the
asymmetric double-well potential:
(1) The amplitude of EXAFS damping function jGðkÞj

shows ‘‘beat’’ both for symmetric and asymmetric
potentials. We can estimate the distance between the
two bottoms of effective potential from the wave-
number where ‘‘beat’’ occurs at the basis of EXAFS
study on high temperature.

(2) In the temperature dependence of third (fourth) order
cumulants, there is minimum (maximum) point (Tm)
which is characteristic for the double-well potential;
Tm reflects the asymmetric parameter c.

These features can be applied to experimental analyses,
e.g., PrOs4Sb12. If we observe the ‘‘beat’’ behavior in the
envelop function of EXAFS for Pr–Os pairs, that indicates
directly Pr–Os is stretching in the double-well potential
inside Os4Sb12 cage: We can estimate the separation of the
bottom positions from the wavenumber at the ‘‘beat’’.
Furthermore, if we observe the minimum point Tm in the
temperature dependence of third-order cumulant for Pr–Os
pair, the double-well potential is asymmetric: We can
estimate the asymmetric parameter c from Tm.

The complex plane expression is introduced to get insight
to the specific feature of the ‘‘beat’’. When the distance
jGðkÞj oscillates, we expect the ‘‘beat’’.

The ‘‘beat’’ analysis has been performed experimentally
for Cu and CuO:24) The ‘‘beat’’ is observed at k ¼ 9 Å�1 for
CuO which can be related to the small difference in the Cu–
O interatomic distances. The good agreement was observed
between small difference in the interatomic distance ob-
tained. More recently, Mustre de Leon et al. showed the beat

analyses: They observed the ‘‘beat’’ at k ¼ 12 Å�1. They
also use the double-well potential for the EXAFS analysis
for axial Cu–O pairs in YBa2Cu3O7.

10) Their analyses are
based on the classical approach even in the low temperature
region. The present path integral calculations include the
quantum tunneling effects, and they can estimate the
temperature range where the classical approximation works
safely.
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