弘前大学 理工学部 数物科学科 数理科学コース

| アクセス |

トップページグラフィックギャラリー > 曲面の部屋5

グラフィックギャラリー

曲面の部屋5

波紋

p := 4

Plot3D[x - Sin[x^2 + 2y^2] + y, {x, -p, p}, {y, -p, p}, PlotPoints→40]

[Graphics:HTMLFiles/gallery12_4.gif]

-SurfaceGraphics -

海底

p := 2

Plot3D[-Exp[-(2x - Sin[y^2])^4] + Exp[x y + Sin[-y^2 x^2] + Exp[-x^2 - y^2]], {x, -p, p}, {y, -p, p}, PlotPoints→40]

[Graphics:HTMLFiles/gallery12_9.gif]

-SurfaceGraphics -

ミッキ - マウスの谷

p := 5

Plot3D[-Exp[-x^2 - y^2 + p (Sin[x] + Cos[y])^2], {x, -p, p}, {y, -p, p}, ViewPoint→ {1, 0, 1}, PlotPoints→40]

[Graphics:HTMLFiles/gallery12_14.gif]

-SurfaceGraphics -

帽子

p := 2

Plot3D[Exp[Sin[Cos[x^2 + y^2]]], {x, -p, p}, {y, -p, p}]

[Graphics:HTMLFiles/gallery12_19.gif]

-SurfaceGraphics -

スキ - 場

p := 2

Plot3D[Exp[y + Sin[x^2]^4], {x, -p, p}, {y, -p, p}, PlotPoints→50]

[Graphics:HTMLFiles/gallery12_24.gif]

-SurfaceGraphics -

卵パック

p := 2Pi

Plot3D[Exp[0.25 (Cos[x] - Sin[y]^2)^3], {x, -p, p}, {y, -p, p}, PlotPoints→40, ViewPoint→ {2, -3, 2}]

[Graphics:HTMLFiles/gallery12_29.gif]

-SurfaceGraphics -

万里の長城

p := 4

Plot3D[Exp[-(x + 1.5Sin[y^2])^4], {x, -p, p}, {y, -p, p}, PlotPoints→80, BoxRatios→ {1, 1, 0.25}]

[Graphics:HTMLFiles/gallery12_34.gif]

-SurfaceGraphics -

山と川

p := 4

[Graphics:HTMLFiles/gallery12_39.gif]

-SurfaceGraphics -

滝

p := 3

Plot3D[Exp[x + Sin[Pi x]] + Log[(x - Sin[y^2])^2] + Exp[-(y - Cos[y^2])^2], {x, -p, p}, {y, -p, p}, PlotPoints→50, ViewPoint→ {-1, -1, 1}]

[Graphics:HTMLFiles/gallery12_44.gif]

-SurfaceGraphics -

岸壁と波

p := 3

Plot3D[Exp[-x^3 Sin[x^2 + y^2]^2] - Exp[Cos[x^2 + y^2]], {x, -p, p}, {y, -p, p}, PlotPoints→40]

[Graphics:HTMLFiles/gallery12_49.gif]

-SurfaceGraphics -

ひょうたん1号

f[u_] := 0.4 (-2u^4 - 3u^3 + u^2 + u + 1) ; g[u_] := u

a := -1.7 ; b := 0.78 ; c := 0 ; d := 2Pi

ParametricPlot3D[{f[u] Cos[v], f[u] Sin[v], g[u]}, {u, a, b}, {v, c, d}]

[Graphics:HTMLFiles/gallery12_55.gif]

-Graphics3D -

ひょうたん2号

f[u_] := 0.2 (-u^4 + 3u^3 - 4u + 5) ; g[u_] := u

a := -1.33 ; b := 2.67 ; c := 0 ; d := 2Pi

ParametricPlot3D[{f[u] Cos[v], f[u] Sin[v], g[u]}, {u, a, b}, {v, c, d}]

[Graphics:HTMLFiles/gallery12_61.gif]

-Graphics3D -

ひょうたん3号

f[u_] := -0.09 (u^4 - 0.00001u^3 - 5.6u^2 + 3u - 7) ; g[u_] := u

a := -2.75 ; b := 2.3 ; c := 0 ; d := 2Pi

ParametricPlot3D[{f[u] Cos[v], f[u] Sin[v], g[u]}, {u, a, b}, {v, c, d}, ViewPoint→ {2, -3, 2}]

[Graphics:HTMLFiles/gallery12_67.gif]

-Graphics3D -

ひょうたん4号

f[u_] := 0.05 (-u^4 - 5u^3 - 3u^2 + 5u + 10) ; g[u_] := u

a := -4.12 ; b := 1.15 ; c := 0 ; d := 2Pi

ParametricPlot3D[{f[u] Cos[v], f[u] Sin[v], g[u]}, {u, a, b}, {v, c, d}]

[Graphics:HTMLFiles/gallery12_73.gif]

-Graphics3D -

ひょうたん5号

f[u_] := -0.02 (u + 3) (u - 3) (u^2 - u + 1.5) ; g[u_] := u

a := -3 ; b := 2.9 ; c := 0 ; d := 2Pi

ParametricPlot3D[{f[u] Cos[v], f[u] Sin[v], g[u]}, {u, a, b}, {v, c, d}]

[Graphics:HTMLFiles/gallery12_79.gif]

-Graphics3D -


Created by Mathematica  (January 4, 2010) Valid XHTML 1.1!
このページのトップへ戻る