弘前大学 理工学部 数物科学科 数理科学コース

| アクセス |

トップページグラフィックギャラリー > 曲線の部屋1

グラフィックギャラリー

曲線の部屋1

目

a := 4 ; b := 1 ; c := 4

ParametricPlot[{Sin[a t] + 2.5Cos[b t], Cos[c t]}, {t, 0, 2Pi}, AspectRatio -> Automatic, Axes -> None]

[Graphics:HTMLFiles/gallery1_4.gif]

- Graphics -

びっくり

a := 2 ; b := 3 ; c := 3 ; d := 2

ParametricPlot[{Sin[a t] + Cos[b t], 1.5Sin[c t] Cos[d t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_9.gif]

- Graphics -

宇宙人

a := 1 ; b := 2 ; c := 3 ; d := 1

ParametricPlot[{Sin[a t] Cos[b t], Sin[c t] Cos[d t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_14.gif]

- Graphics -

翼

a := 2 ; b := 3 ; c := 6 ; d := 5

ParametricPlot[{Sin[a t] Sin[b t], Sin[c t] Cos[d t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_19.gif]

- Graphics -

ブ - メラン

a := 1 ; b := 2 ; c := 1 ; d := 1

ParametricPlot[{0.5Sin[a t] + Cos[b t], Cos[c t] + Cos[d t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_24.gif]

- Graphics -

ブ - メラン

a := 10 ; b := 5 ; c := 1

p := 1 ; q := -2 ; r := 4

ParametricPlot[a {Cos[p t], Sin[p t]} + b {Cos[q t], Sin[q t]} + c {Cos[r t], Sin[r t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_30.gif]

- Graphics -

ヒトデ

a := 10 ; b := 3 ; c := 1

p := 1 ; q := -4 ; r := 6

ParametricPlot[a {Cos[p t], Sin[p t]} + b {Cos[q t], Sin[q t]} + c {Cos[r t], Sin[r t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_36.gif]

- Graphics -

羽織

a := 50 ; b := 10 ; c := 3

p := 1 ; q := 6 ; r := -10

ParametricPlot[{a Sin[p t] + b Sin[q t] + c Sin[r t], a Cos[p t] + b Cos[q t] + c Cos[r t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

[Graphics:HTMLFiles/gallery1_42.gif]

- Graphics -

2惑星

k1 := 0.0001 ; k2 := 0.00001

T := 200

NDSolve[{x1''[t] == -x1[t] (x1[t]^2 + y1[t]^2)^(-1.5) + k2 (x2[t] - x1[t]) ((x1[t] - x2[t])^2 ... [0] == 1, x1 '[0] == 0, y1 '[0] == 0.9, x2 '[0] == 0, y2 '[0] == -0.24}, {x1, y1, x2, y2}, {t, 0, T}]

ParametricPlot[{Evaluate[{x1[t], y1[t]}/.%], Evaluate[{x2[t], y2[t]}/.%]}, {t, 0, T}, AspectRatio -> Automatic]

{{x1 -> InterpolatingFunction[{{0., 200.}}, <>], y1 -> InterpolatingFunction[{{0., 200.} ... erpolatingFunction[{{0., 200.}}, <>], y2 -> InterpolatingFunction[{{0., 200.}}, <>]}}

[Graphics:HTMLFiles/gallery1_50.gif]

- Graphics -

3惑星

k1 := 0.00001 ; k2 := 0.0001 ; k3 := 0.00001

T := 110

NDSolve[{x1''[t] == -x1[t] (x1[t]^2 + y1[t]^2)^(-1.5) + k2 (x2[t] - x1[t]) ((x1[t] - x2[t])^2 ... , x2 '[0] == 0, y2 '[0] == -0.5, x3 '[0] == 0.3, y3 '[0] == 0}, {x1, y1, x2, y2, x3, y3}, {t, 0, T}]

ParametricPlot[{Evaluate[{x1[t], y1[t]}/.%], Evaluate[{x2[t], y2[t]}/.%], Evaluate[{x3[t], y3[t]}/.%]}, {t, 0, T}, AspectRatio -> Automatic, PlotRange -> All]

{{x1 -> InterpolatingFunction[{{0., 110.}}, <>], y1 -> InterpolatingFunction[{{0., 110.} ... erpolatingFunction[{{0., 110.}}, <>], y3 -> InterpolatingFunction[{{0., 110.}}, <>]}}

[Graphics:HTMLFiles/gallery1_58.gif]

- Graphics -


Created by Mathematica  (July 21, 2006) Valid XHTML 1.1!
このページのトップへ戻る